ΗΤΠ И ЭΦΦΕΚΤИВНОСТЬ ПРОИЗВОДСТВА

УЛК 631.234

Ю. Н. КУЦЕНКО, Таврический агротехнический университет, г. Мелитополь А. Е. ПИРОТТИ, Е. Л. ПИРОТТИ

Национальный технический университет "Харьковский политехнический институт", г. Харьков

МОДЕЛИРОВАНИЕ СТАЦИОНАРНОГО ЭЛЕКТРИЧЕСКОГО поля. ВЗАИМОДЕЙСТВУЮЩЕГО С СЕМЕНАМИ И КОРНЕВОЙ СИСТЕМОЙ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР В ГРУНТЕ

Исследован процесс распределения электрического поля в почве, созданного системой электрических штырей.

Досліджений процес розподілу електричного поля в грунті, створеного системою електричних штирів.

Вступление

Существует достаточно большое число работ отечественных и зарубежных авторов, в экспериментальной точек которых с теоретической и зрения рассматривается взаимодействие высокочастотных электромагнитных полей СВЧ и КВЧ диапазонов с биологическими объектами разной природы и с разными геометрическими и электрофизическими свойствами. В результате этого взаимодействия можно получать изменение жизненных процессов, происходящих в тканях этих объектов. Такие изменения могут нести как позитивный, так и негативный характер.

Однако следует отметить, что стимулирующее или ингибирующее действие на биологические объекты может оказывать и стационарное электрическое поле, в котором находятся данные объекты. В полной мере это относится и к семенам и корневым системам сельскохозяйственных культур, находящихся в грунте. Очевидно, что для проведения теоретического исследования такого взаимодействия необходимо вначале рассмотреть модель распределения электростатического поля в почве, вызванного помещенным в грунт единичным заряженным штырем.

Основная часть

Итак, пусть в землю помещен одиночный металлический штырь с заданными размерами и заданным постоянным потенциалом, поданным на него (рис. 1). Поверхность земли при этом будем считать плоской.

Среда 1, находящаяся над границей раздела, является характеризуется воздухом диэлектрической проницаемостью ε_1 магнитной проницаемостью μ_0 , среда 2 – это почва с проницаемостями ε_2 и μ_0 . Поскольку обе указанные среды являются немагнитными, то их магнитные проницаемости одинаковы и равны проницаемости свободного пространства μ_0 . Диэлектрическую проницаемость воздуха можно считать такой же, как и у свободного пространства, то есть $\mathcal{E}_1 = \mathcal{E}_0$.

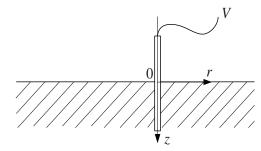


Рис. 1. Одиночный металлический штырь в грунте, с подведенным напряжением V: 1 – пространство над поверхностью почвы; 2 – почва

Как известно [1], система уравнений Максвелла в случае электростатики имеет вид:

$$\begin{cases} \operatorname{rot} \vec{E} = 0; \\ \operatorname{div} \vec{D} = \rho; \\ \vec{D} = \varepsilon_0 \, \varepsilon_2 \, \vec{E}, \end{cases}$$
 (1)

где \vec{E} – вектор напряженности электрического поля;

 $\vec{D} = \varepsilon_0 \, \varepsilon_2 \, \vec{E}$ – вектор электрической индукции;

 ρ – плотность электрического заряда;

 \mathcal{E}_0 – электрическая постоянная;

 \mathcal{E}_2 — относительная диэлектрическая проницаемость среды.

Учитывая известное соотношение [2]

$$\vec{E} = -\operatorname{grad}\psi, \qquad (2)$$

после ряда преобразований получаем скалярное уравнение Лапласа для электрического потенциала

$$\Delta \psi = 0. \tag{3}$$

Решим краевую задачу Дирихле [3] для уравнения Лапласа (3) методом разделения переменных.

С этой целью рассмотрим полярную систему координат (r, φ) с началом в центре круга, который совпадает с осью цилиндрического штыря (рис. 1). В этой системе координат уравнение (3) будет иметь вид [2, 3]:

$$\Delta \psi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \varphi^2} = 0.$$
 (4)

Очевидно, что решением задачи Дирихле для скалярного уравнения Лапласа (4) будет сумма всех его решений:

$$\psi(r,\varphi) = \sum_{n=0}^{\infty} \frac{1}{r^n} \Big(A_n \cos n\varphi + B_n \sin n\varphi \Big). \tag{5}$$

Чтобы получить частное решение рассматриваемой задачи из общего решения (5) необходимо воспользоваться граничным условием:

$$\sum_{n=0}^{\infty} \frac{1}{r_0^n} \left(A_n \cos n \varphi + B_n \sin n \varphi \right) = U, \tag{6}$$

где r_0 – радиус кругового сечения металлического штыря; U – поданное на штырь напряжение.

Разлагая напряжение U в ряд Фурье на отрезке $[0,2\pi]$:

$$U(\varphi) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\varphi + b_n \sin n\varphi,$$

получаем частное решение для распределения электрического потенциала в почве вокруг заряженного электрического штыря с заданными граничными условиями:

$$\psi(r,\varphi) = U + \sum_{n=1}^{\infty} \left(\frac{r_0}{r}\right)^n \frac{U}{n\pi} \left(1 - \left(-1\right)^n\right) \sin n\varphi. \tag{7}$$

Воспользовавшись выражением (2), получаем напряженность создаваемого штырем электрического поля в полярной системе координат:

$$\vec{E} = \sum_{n=1}^{\infty} \frac{U r_0^n}{\pi r^{n+1}} \left(1 - \left(-1 \right)^n \right) \sin n \varphi \ \vec{e}_r^0 - \sum_{n=1}^{\infty} \frac{U r_0^n}{\pi r^{n+1}} \left(1 - \left(-1 \right)^n \right) \cos n \varphi \ \vec{e}_{\varphi}^0. \tag{8}$$

При этом величина модуля напряженности электрического поля будет выглядеть следующим образом:

$$\left| \vec{E} \right| = \sqrt{E_r^2 + E_{\varphi}^2} = \frac{2U}{\pi} \sum_{n=1}^{\infty} \frac{r_0^n}{r^{n+1}},$$
 (9)

где n – нечетно.

На основании выражения (9) проведены численные расчеты распределения модуля напряженности электрического поля, создаваемого одиночным заряженным металлическим штырем, в плоскости перпендикулярной его оси (рис. 2). При этом напряжение, подаваемое на штырь, бралось равным 100 В; радиус штыря – 0,01 м; рассматривалась зона вокруг штыря с радиусом до 1 м.

Приведенные выше выражения (8) и (9) относятся к случаю, когда центр системы координат совпадает с осью заряженного штыря. Однако, поскольку распределение электромагнитного поля инвариантно относительно выбранной системы координат, то при переходе к системе координат, у которой центр находится в произвольной точке, характер указанных выражений не изменятся. Несколько другой вид будут иметь лишь координаты рассматриваемой точки.

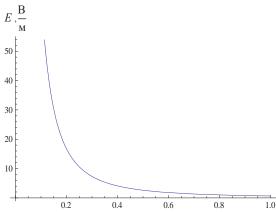


Рис. 2. Зависимость напряженности электрического поля в почве от расстояния до одиночного металлического штыря

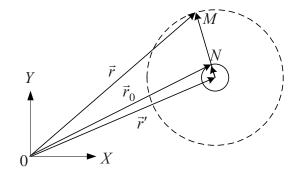


Рис. 3. Произвольное расположение одиночного металлического штыря в прямоугольной декартовой системе координат

Пусть начало координат не совпадает с осью заряженного металлического штыря, погруженного в почву (рис. 3). Здесь \vec{r}' соответствует радиус-вектору точки, совпадающей с осью штыря в перпендикулярной к нему плоскости; \vec{r}_0 — радиус-вектор точки N, лежащей на поверхности штыря; \vec{r} — радиус-вектор произвольной точки M, в которой исследуется созданное штырем электрическое поле.

В этом случае выражение (7) примет вид:

$$\psi(r,\varphi) = U + \sum_{n=1}^{\infty} \left(\frac{\left| \vec{r}_0 - \vec{r}' \right|}{\left| \vec{r} - \vec{r}' \right|} \right)^n \frac{U}{n\pi} \left(1 - \left(-1 \right)^n \right) \sin n\varphi, \tag{10}$$

a(9) -

$$\left| \vec{E} \right| = \sqrt{E_r^2 + E_{\varphi}^2} = \frac{2U}{\pi} \sum_{n=1}^{\infty} \frac{\left| \vec{r}_0 - \vec{r}' \right|^n}{\left| \vec{r} - \vec{r}' \right|^{n+1}}.$$
 (11)

Полученные выражения (10), (11) позволяют найти электростатическое поле в почве, созданной системой электрических штырей.

Список литературы

- 1. Ильинский А. С., Кравцов В. В., Свешников А. Г. Математические модели электродинамики: Учебное пособие для вузов. М.: Высш. шк., 1991. 224 с.
- 2. Кальницкий Л. А., Добротин Д. А., Жевержеев В. Ф. Специальный курс высшей математики для втузов. М.: Высшая школа, 1976. 390 с.
- 3. Тихонов А. Н., Самарский А. А. Уравнения математической физики. М.: Наука, 1999. 799 с.

DESIGN OF STATIONARY ELECTRIC PAUL, INTERACTIVE WITH SEED AND ROOTAGE OF AGRICULTURAL CULTURES IN SOIL

Ju. N. KUZENKO, A. E. PIROTTI, E. A. PIROTTI

The process of distributing of the electric field in soil, created the system of electric shtyrey is investigational.

Поступила в редакцию 18.03 2011 г.