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BLIND SIGNAL SEPARATION APPLICATIONS AND METHODS

Abstract. Blind signal separation is the task of separating the given mixture signal into two or more
corresponding sources. It finds an application in many fields of human activity such as medicine,
telecommunications, art and many more and is a crucial task in signal processing. However, the task
itself appears to be quite challenging due to its ill-posed nature. Despite that many modern machine
learning-based approaches achieve the state-of-the-art results in different blind source separation tasks
(e. g. audio or music source separation) however these methods can suffer from unwanted artifacts in
the source signals estimates. This paper presents an overview of the methods for blind source
separation covering methods from traditional statistical ones to modern machine learning-based
approaches and applications of the results of blind source separation task. Moreover, we discuss some
potential areas of research in the field of blind source separation to facilitate further research and
develop powerful solutions for this task.
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3ACTOCYBAHHA TA METO/IH CJIIOIO PO3AIJIEHHA CUT'HAJIIB

Anomauyia. Ciine po3aiJICHHS CHUTHAJIB TOJIATAE B PO3AUICHHI JAHOTO CUTHATY CyMIIIi Ha JiBa abo
OinpIIe BiATIOBIAHUX JpKepen. Pe3ynmbraTu CIIMOro po3AijieHHS CHTHAIIB 3HAXOAWTH 3aCTOCYBaHHS B
Oararbox cepax JOICHKOI TISILHOCTI, TAKUX K MEAWIIMHA, TEICKOMYHIKaIlii, MUCTEIITBO Ta Oaratro
IHIKX, 1 € KITIOYOBUM 3aBJaHHAM B 00poOmi curHamiB. OgHaK caMme 3aBIaHHS BUIAETHCS JOCUTH
CKJIaTHUM Yepe3 Te, II0 € HEKOPEKTHO BHU3HaYeHMM. He3Bakaroum Ha Te, IO 0arato CydacHHX
MiIX0/1iB, 3aCHOBAaHMX HAa MAIIMHHOMY HaBYaHHI, JOCATAIOTh HAWCYYaCHIIIUX PE3yJbTaTIB y PI3HUX
3aBJaHHAX CIMOTO PO3IIICHHS JDKEpel (HapuKiIad, PO3IISIEHHS JDKEPEIT 3ByKY UM MY3HUKH), OJHAK ITi
METOIM MOXYTh CTpa)XJaTH BiJ HeOakaHUX apTedakTiB B OIIHKaX CHTHANIB JKepena. Y LbOMY
JOKYMEHTI TPEACTaBICHO OIVISIJI METOIB CIIIOTO PO3IUICHHS JDKEpEN, IO OXOIUTFOE METOAH Bill
TPAIUILIHHAX CTATUCTUYHHUX JIO0 CYy9aCHUX MIIXOIIB HA OCHOBI MAIIMHHOTO HABYaHHS Ta 3aCTOCYBaHHS
PE3YIBTATIB CIIMOTO pO3iaeHHs Keped. KpiM Toro, Mu 0OTOBOPIOEMO JIesIKi MOTEHITIHHI HAPSIMKH
JOCIIJKeHD Y cdepl CINoro po3AUICHHS DKEpen, 00 MOJETIIUTH MOJANbINl JOCTI/DKSHHS Ta
PO3pOOUTH MOTY>KHI PIIIEHHS A7 IbOTO 3aBIaHHS.

Knrowuoei cnosa: ciine pOB,I[iJ'IeHHH CI/IFHaJ'IiB, MalllMHHC HaBYaHHA
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Introduction. Signal separation is the key problem in many areas of human activity.

Fields of application of signal separation results include: medical signal processing,
including electrocardiography, electroencephalography, electromyography,
magnetoencephalography, magnetic resonance imaging (MRI), functional MRI, and
others; audio processing, in particular the separation of audio signals, the purpose of
which is to separate the voices of individual people from a mixed signal; image
processing, which in particular is widely used for processing medical images; separation
of musical signals, which allows you to separate parts of individual musical instruments
from the recording; and other applications in particular in reserve forecasting, seismic
monitoring, text document analysis, etc. The problem of blind signal separation is also
known as the cocktail party effect, the essence of which is the ability of a person to
follow one conversation among many in a noisy place in which many people are having
parallel conversations at the same time, such as at a cocktail party [1]. Although a
person can solve such a problem with relative ease, it is, in a general sense, non-trivial
for solving by mathematical or computer means, because in most cases it is ill-posed
problem. However, over the years of existence of this problem, many methods of its
solution have been developed, starting with classical methods, such as Independent
Component Analysis or Non-Negative Matrix Factorization, and ending with modern
deep learning methods that currently dominate the solution of the problem of blind
signal separation. In this work, the formulation of the blind signal separation problem
will be presented in mathematical form, a review of blind signal separation methods and
literature on this problem will be carried out, and the metrics, both subjective and
objective, used to evaluate the quality of signal separation will be reviewed.

Math formulation. The problem of blind signal separation (BSS) is stated as
follows. Let y be some signal that is the sum of signals x;, x5, ... , x,, so that:

y = Zév=1xia
The task of BSS is to find an estimate of the components of the signal X;,i = 1...N,
which will be the best approximate for the original components x; of the signal y.
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Moreover, such an estimate is made only based on the signal y, without any prior

knowledge of the components of the signal x; or a mixing procedure. In the BSS
terminology, the signal y is called a mixture, and signals x; are called sources.
Since the sources x; undergo certain processing, the mixing process can be

represented as:

y = AX
where y is a set of mixed signals: y = (¥1(t) ... Y (®))T,y € R™, x is a set of
source signals: x = (x1(t) ... x,(t))T,x € R", 4 is a mixing matrix: A = [aij] €

Rmxn

If m = n, i.e., the number of mixed signals is equal to the number of source signals,
it is a fully-determined problem of signal separation. If the mixing matrix 4 is not
singular, the solution is uniquely defined as:

X = By,

where % is a set of approximations of source signals: £ = (X;(t) .. X,(t))T,% €
R™, and B is the separation matrix: B = [bi j] € RV B =A"1,

If m > n and the matrix A4 has full rank or the columns of the matrix A4 are linearly
independent, a least squares solution can be obtained as:

R=(ATA) ATy
by minimizing the norm of the error by matrix 4 as:
argminy|ly — Ax||?.

In this case, the task is considered overdetermined.

In most cases, usually, m < n, which makes the problem underdetermined. In this
case, nonlinear methods are used to separate the signals.

Methods. BSS methods have evolved and improved over time. Starting with the
basic statistical methods like Independent Component Analysis, Non-Negative Matrix
Factorization, and others, towards modern deep learning-based methods, which are
currently yielding state-of-the-art results in source separation. Next, an overview of the
main methods of BSS will be presented.

Traditional methods. Traditional BSS methods mainly use statistical apparatus and

theoretical developments to build a model that performs signal separation. Many
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traditional methods assume the independence of sources. This greatly simplifies the

process of modeling and separation of sources, and introduces some prior assumptions
about the source signals, which is extremely important for the ill-posed nature of the
given task when the number of signal sources is greater than the number of mixed signal
examples.

The two widely used traditional methods for BSS task are Independent Component
Analysis and Non-Negative Matrix Factorization.

Independent Component Analysis divides a multidimensional signal into maximally
independent positive subcomponents. Let x = (X1 - Xm)T be the vector containing
samples of mixed signal and s = (S1 -~ Sp)7 is the hidden components vector which
are the source estimates. The task of Independent Component Analysis method is to
transform the vector x with certain statistical transform » into a vector of independent
components s = WX that is measured by some independency measure F(S1 - Sn).
For the ICA method the measure F' is a kurtosis which is the fourth moment of
probability distribution of random variable s. Since the mixed signal that is represented
by the vector x is a mixture of the signals of several sources that are represented by the
vectors s;, the vector x can be represented as:

X = As,

where A4 is a mixing matrix. The mixing matrix 4 is formed from the column vectors,
which are the basis vectors that represent the data vector x [2].

Another commonly used method in signal separation is Non-Negative Matrix
Factorization. Let V € R™ ™ be a matrix consisting of m n-dimensional data vectors

with condition that every entry to the matrix is non-negative meaning that v;; = 0. The

matrix V can be roughly represented as the product of two matrices W and H W €
R™S H € RS*™ where s marks the common dimension which is also called the
factorization rank. In the context of signal separation, the dimension s can be interpreted
as the number of sources into which the output signal must be separated. It is obvious
that s 1s chosen much less than m and n. All elements of matrices W and H are also non-

negative so that w;; = 0 and h;; = 0.
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The essence of the method is to minimize the distance function, which is usually

given by the Frobenius norm between the X matrix and the product of the W and H
matrices:
drro(X,Y) = 211X = YlIZro = 5 %o (Xi; — Y¥i)2,Y = WH.

Minimization is carried out using the gradient descent algorithm. The W and H
matrices are initialized in a certain way and updated at each step of the algorithm until a
certain number of iterations, or a certain predefined approximation accuracy is reached
[3].

Machine Learning-based methods. Mariani et al [4] define two main classes of
deep models for signal separation as discriminative and generative. Discriminative
models aim to build an effective hidden representation that helps to separate the source
signals. Also, discriminative models always need source-mixture pairs in the training
dataset to train the model. In contrast, generative models learn the data distribution of
the sources called prior. The mixed signal in such an architecture is given as a condition
during the inference to estimate sources, and the likelihood function maps the mixed
signal to the corresponding estimates of its sources.

Methods that use deep learning approaches have recently dominated the field of blind
signal separation obtaining state-of-the-art results. The following is an overview of the

most prominent deep neural network architectures used for signal separation.

Earlier deep learning-based methods often used Recurrent Neural Networks (RNN5s)
as base architecture [5-7]. It is quite an obvious choice of architecture since RNNs
designed to work specifically with data that changes over time. However, Luo et al [§]
address some limitations of the models with recurrent architectures including its non-

parallelizable nature.

The models with convolutional architecture address some limitations of RNNs. They
can be parallelized that speed up inference time and can cover larger receptive fields
which addresses the vanishing gradient problems in RNNs. The majority of CNN based

models follow U-Net [9] design. They can either use 1D convolutions for models that
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operate in a time (i. e. waveform) domain [8, 10, 11] or 2D convolutions for models that

operate in a time-frequency (i. e. spectrogram) domain [12, 13].

Also, some convolutional based models operate in both time and time-frequency
domains. The examples of such models can be HT Demucs [14] architecture which
achieves state-of-the-art results in Music Source Separation with an average SDR of
9.20 dB on MUSDBIS [15] dataset and HS-TasNet [16] which is an adaptation of
TasNet [17] architecture for the usage in applications that require real-time processing
speeds.

In recent years models with Transformer architecture yielding state-of-the-art results
in image and text processing tasks. The models with transformer architecture designed
specifically for signal separation typically consist of encoder module which turn the
input signal into its vector representation, the transformer block itself that performs
signal separation in the latent embedding space and the decoder module which restores
the estimated source signals from latent embedding vectors. Particularly, the current
state-of-the-art model in Music Source Separation HT Demucs [14] follows the
described design.

Despite the fact that models with CNN, RNN or Transformer architectures currently
dominate the field of signal separation, Nakano et al [18] research the possibility of
adapting Image-to-Image mixer [19] which is a neural network architecture based
mainly on fully-connected layers to the task of Music Source Separation facilitating the
further research on adapting this type of neural network architecture to BSS task.

Models that are based on the generative approach trained to generate an estimate of
the source signals which doesn’t differ perceptually from the actual source signal. This
is achieved by training a discriminator model to distinguish real samples from generated
ones. Thus, the discriminator stimulates the generator to output realistic samples that are
perceptually indistinguishable from the actual source signals.

In [20], it is proposed to train the separation model not in the traditional manner with
an assessment of the separation quality based on a comparison of the real source signals

and their estimates using a certain loss function (e. g. MSE) but the use of a generative
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adversarial architecture in which the separator model plays the role of a generator, and

separate discriminators for each source play the role of an unsupervised loss function.

Zhu et al [21] use flow models, which are one of the types of generative models for
modelling prior distributions of sources. Within the framework of probabilistic
modeling, it can be argued that different sources have different statistical behavior.
Indeed, if we represent the prior distribution of sources as pg:

Si~Pg(Si),

where s; 1s a signal of the i-th source and a p,,;, will be the probability of obtaining the

mixed signal x when mixing the source signals s; such as:
X|S1 wee Sp~Pmix (| Xiz1 505

then p; will be the distribution over sources s; and p,,, will be the distribution of
noise between the sum of true source signals and the mixture obtained from the sum of
estimated source signals. To perform separation using such a model, it is necessary to
train pg so that this distribution simulates the distribution of the source signals, and then
find the maximum posterior probability to recover the desired source signal s;.

The generative approach proposed in [4] is based on learning the joint prior
distribution of sources p(s; ... S,) using diffusion models trained according to the
principle of noise elimination during evaluation to learn the prior distribution. The main
idea of this method is to approximate the estimated distribution function p(s), which
represents the gradient of the logarithm of the distribution function Vg log p(s) which is
called the score, instead of estimating the distribution itself. The model uses the
probability flow differential equations to simulate the forward and reverse evolution of a
data point within the diffusion process, that is, the noise of the original data distribution
and its restoration. This approach allows you to use one model to generate signals and to
separate their mixture. Generation is carried out by sampling signals from each prior
distribution of a source in the hidden space, their restoration and mixing, from which
the generated mixed signal is formed. The separation is carried out by sampling the
source signals from the conditional distribution of the sources at a given mixed signal y:

p(sy ... Sp|y) with subsequent restoration of the sampled source signals from the hidden
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representation into a valid signal by gradually eliminating the noise by solving the

above-mentioned probability flow ODE.

Adaptation of the DiffWave model [22] for Music Source Separation, specifically
vocals and accompaniment, is proposed in [23]. A mixed signal is modeled by a mixture
of Gaussian functions. The input data is a vocal or accompaniment source signal, which
the model transforms into a mixed-signal space using a forward diffusion process, and
then learns to recover a given source signal from a given mixed signal using a reverse
diffusion process.

Quality assessment. There are two methods of evaluating the quality of BSS
systems: objective and subjective. Objective evaluations evaluate the separation quality
by performing a set of calculations that compare the output signals of the signal
separation model to the actual source signals. Subjective evaluations involve humans to
evaluate the quality of the output samples of the signal separation model.

Objective and subjective evaluation methods have their benefits and drawbacks. The
main disadvantage of objective evaluation methods is the impossibility of considering
all aspects of human perception only with the help of computational methods. On the
other hand, such methods are much faster and cheaper than subjective ones. Subjective
methods are much more expensive and time-consuming and are also subject to the
influence of the individuality of the perception of the people performing the assessment
but are much more reliable and representative than objective methods, because real
people are involved in assessing the quality of the model.

The metrics commonly used to evaluate the quality of BSS models, are signal-to-
distortion ratio (SDR), signal-to-interference ratio (SIR), and signal-to-artifact ratio
(SAR). The estimate of the source signal restoration is:

Xi = Xtarget T €noise T Cinterf + artir

where X,q. 1S a true source signal, e, 1s the error caused by noise in the initial
estimate of the source signal, e;,..r1s the error caused by the interference of signals from
other sources in the initial signal estimation for this source, e, 1s the error caused by

unwanted artifacts in the original estimate of the source signal. All the above metrics are
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measured in decibels and for all metrics higher values are better. Also, all these metrics

require a true source signal output for calculation.
The signal-to-artifact ratio (SAR) determines the number of unwanted artifacts in the

signal estimation compared to the true source signal and is calculated as:

SAR =10 10g10 (”xtarget"'einterf"'enoise”2>.

leareisl’

The signal-to-interference ratio (SIR) determines the amount of other sources
observed in the signal estimate of any particular source. In music, for example,
interference can occur when two different sources (such as a guitar and a piano) sound
simultaneously in the same frequency range. The signal-to-interference ratio is

calculated according to the following formula:

2
SIR = 101log;, (M)

leincersll”
The signal-to-distortion ratio (SDR) is one of the most common objective metrics for
evaluating the quality of signal separation. This ratio is borrowed from electronics and
is widely used in signal processing. It determines how well the evaluation of the source

sounds in general and is calculated according to the formula:

2
SDR — 1010g10< ”xtarget“ )

”einterf"'enoise"'eartif”2

The main problem with using the SDR metric is its dependence on signal amplitude
scaling. To eliminate this problem, the SI-SDR metric was proposed in [24], which
scales the signal by amplitude in such a way that the value of the metric for two given
signals is constant and independent of their amplitude. Thus, the value of the SI-SDR
metric for two signals: the true and the estimated one can be calculated according to the

following formulas:

2
S
SISDR = lsl_ﬁ,for B suchthats L s—[$

where s is a true signal, § is a source estimate and f is a scaling coefficient, or:
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2
SISDR = %!

|as—§|2'f0r a = argming|as — §|?,

where « is a scaling coefficient for true signal. The optimal scaling coefficient can be
obtained as @ = §"s/||s||*. From this the scaled true signal is defined as e;qy4e¢ = Qs

and thus the restored signal can be defined as $§ = e;4rger + €res Where e is the

restoration error. Then the SI-SDR metric can be defined as:

AT 2

2 3Ts
SISDR = 10logs, (%) ~ 101ogy | B,
||s||25_§|

The use of subjective methods to evaluate the quality of signal separation systems
such as MUSHRA (Multiple Stimuli with Hidden Reference and Anchor) test, in which
professional audio engineers evaluate the quality of the obtained source estimates,
potentially gives the best assessment of the quality of the signal separation. However,
the use of such methods is accompanied by a high cost, because for the results to have
statistical significance, it is necessary to involve many experienced specialists. In

addition, the processing of the results of such tests can be carried out for a long time.

In contrast, some studies [25, 26] show that involving many non-specialists in audio
engineering in online MUSHRA-like tests can produce effective quality assessment
results that are not inferior to experts. In addition, this approach is significantly cheaper
than a full-scale MUSHRA test.

Although crowdsourcing MUSHRA-like tests to evaluate separation quality is
significantly cheaper than a full-scale test counterpart and takes less time to process the
results, the primary standard for evaluating the quality of many BSS models is currently
the use of objective metrics such as SDR, as obtaining these metrics is associated with
much lower costs.

Discussion. Despite the fact that the major improvements in the field of BSS
achieved in recent years there are multiple potential areas of improvement and more
research to be done. Next, we will describe the main potential areas of research as we
see. In a past few years several state-of-the-art big music generation models have been
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released [27-31]. It is yet to be researched if any of these models originally trained to

perform a task of unconditional music and audio generation can be leveraged to perform
a zero-shot (i. e. without any additional training for the given task) or few-shot (i. e.
training with a few examples) source separation.

The other main area of research is exploring generative approaches to source
separation. Many current model results suffer a loss in quality of separation due to
“bleeding” which means a part of other source signal which is not belonging to the
current source is present in its estimated signal. It’s believed that using generative
modeling approaches can address this issue as the nature of data representation in these
models are different opposed to models that follow a discriminative approach.

Also models with transformer architecture show a superior results in many ML tasks
in recent years which poses the question of adapting models with transformer
architecture to perform a source separation. However, the models designed specifically
for source separation that uses transformer architecture in its design nowadays mostly
uses convolutional encoders and decoders to obtain a signal representation for the
transformer. Recently the Audio Spectrogram Transformer [32] was proposed for the
Audio Classification task and yielded the state-of-the-art results for this task. This
model follows the design of ViT [33] and is trained on spectrogram images (i. €. log-mel
spectrograms). The one important thing to notice about this model is that it is a pure
transformer and doesn’t contain any convolutional blocks. So, adapting this architecture
to a source separation task is another area of potential research.

Conclusions. The paper presented a brief survey on the main applications and
methods for solving the task of blind signal separation covering the methods from
traditional statistical ones to modern state-of-the-art machine learning-based methods.
We also highlighted some areas of potential research in this field to facilitate further
research and to build more powerful systems for solving the task of blind signal

separation.
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