АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ

УЛК 697.3

Редько Олександр Федорович, д-р техн. наук, проф., завідувач кафедри теплогазопостачання, вентиляції і використання теплових вторинних енергоресурсів. *E-mail*: <u>tgvtver@gmail.com</u> (<u>http://tgvtver.org/</u>)

Тарадай Олександр Михайлович, д-р техн. наук, проф., професор кафедри теплогазопостачання, вентиляції і використання теплових вторинних енергоресурсів. *E-mail*: info mrk@ukr.net

Чернокрилюк Володимир Васильович, аспірант кафедри теплогазопостачання, вентиляції і використання теплових вторинних енергоресурсів. *E-mail*: <u>riello@ukr.net</u>

Єсін Єгор Сергійович, аспірант кафедри теплогазопостачання, вентиляції і використання теплових вторинних енергоресурсів. *E-mail*: <u>esin mrk@ukr.net</u>

Харківський національний університет будівництва та архітектури, м. Харків, Україна. *Вул. Сумська, 40, м. Харків, Україна, 61002. Тел.:* +38-057-700-16-40.

КОМБІНОВАНІ СИСТЕМИ ТЕПЛОПОСТАЧАННЯ З ВІДНОВЛЮВАЛЬНИМИ ДЖЕРЕЛАМИ ТЕПЛА

У статті пропонується схема комбінованого теплопостачання з використанням високотемпературних і низькотемпературних джерел тепла працюючих на одну систему.

Ключові слова: теплопостачання, генератори теплової енергії, бак-теплоутилизатор, вторинні енергоресурси, поновлювані енергоресурси, енергозбереження.

Редько Александр Федорович, д-р техн. наук, проф., заведующий кафедрой теплогазоснабжения, вентиляции и использования тепловых вторичных энергоресурсов. *E-mail*: tgvtver@gmail.com

Тарадай Александр Михайлович, д-р техн. наук, проф., профессор кафедры теплогазоснабжения, вентиляции и использования тепловых вторичных энергоресурсов. *E-mail*: <u>info_mrk@ukr.net</u>

Чернокрылюк Владимир Васильевич, аспирант кафедры теплогазоснабжения, вентиляции и использования тепловых вторичных энергоресурсов. *E-mail*: <u>riello@ukr.net</u>

Есин Егор Сергеевич, аспирант кафедры теплогазоснабжения, вентиляции и использования тепловых вторичных энергоресурсов. *E-mail*: <u>esin_mrk@ukr.net</u>

Харьков, Украина. ул. Сумская, 40, г. Харьков, Украина. ул. Сумская, 40, г. Харьков, Украина. ул. Сумская, 40, г. Харьков, Украина, 61002. Тел.: +38-057-700-16-40.

КОМБИНИРОВАННЫЕ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ С ВОЗОБНОВЛЯЕМЫМИ ИСТОЧНИКАМИ ТЕПЛА

В статье предлагается схема комбинированного теплоснабжения с использованием высокотемпературных и низкотемпературных источников тепла работающих на одну систему.

Ключевые слова: теплоснабжение, генераторы тепловой энергии, бак-теплоутилизатор, вторичные энергоресурсы, возобновляемые энергоресурсы, энергосбережение.

Redko Aleksandr Fedorovich, Ph. D., Professor, head of the Department of Heat and Gas supply, Ventilation and use of Thermal Secondary Energy Resources. *E-mail*: tgvtver@gmail.com

Taraday Aleksandr Mikhaylovich, Ph. D., Professor, Department of Heat and Gas supply, Ventilation and use of Thermal Secondary Energy Resources. *E-mail:* info_mrk@ukr.net

Chernokryluk Vladimir Vasilyevich, postgraduate, Department of Heat and Gas supply, Ventilation and use of Thermal Secondary Energy Resources. *E-mail*: riello@ukr.net

Yesin Yegor Sergeevich, postgraduate, Department of Heat and Gas supply, Ventilation and use of Thermal Secondary Energy Resources. *E-mail*: esin_mrk@ukr.net

Kharkov national university of civil engineering and architecture, Kharkiv, Ukraine. *Sumskaya str.*, 40, *Kharkiv*, *Ukraine*, 61002. *Tel.*: +38-057-700-16-40.

COMBINED HEAT SUPPLY SYSTEM WITH RENEWABLE HEAT SOURCES

The paper proposes a combined heating scheme using high-temperature and low-temperature heat sources working on the one system.

Keywords: heat supply, heat generators, heat exchanger tank, waste energy, renewable energy, energy saving.

Введение

Повышение энергоэффективности систем централизованного теплоснабжения (СЦТС) является весьма актуальной задачей, так как потери тепловой энергии в этих системах достигают 30% - 40%. Причинами таких потерь являются: износ оборудования, тепловой изоляции и трубопроводов, а также значительные потери тепла потребителями. В

существующих СЦТС не используется воспроизводимая тепловая энергия таких источников, как солнце, воздух, геотермальные воды, вторичных тепловых энергоресурсов (ТВЭР) и других источников тепловой энергии.

С целью устранения перечисленных недостатков в современных системах теплоснабжения и при реконструкции существующих СЦТС -предлагаются объединять все возможные источники тепловой энергии, подключая их к бойлеру-теплоутилизатору. От бойлера питаются системы теплоснабжения абонентов, обеспечивая тепловой энергией потребности отопления, вентиляции, горячего водоснабжения.

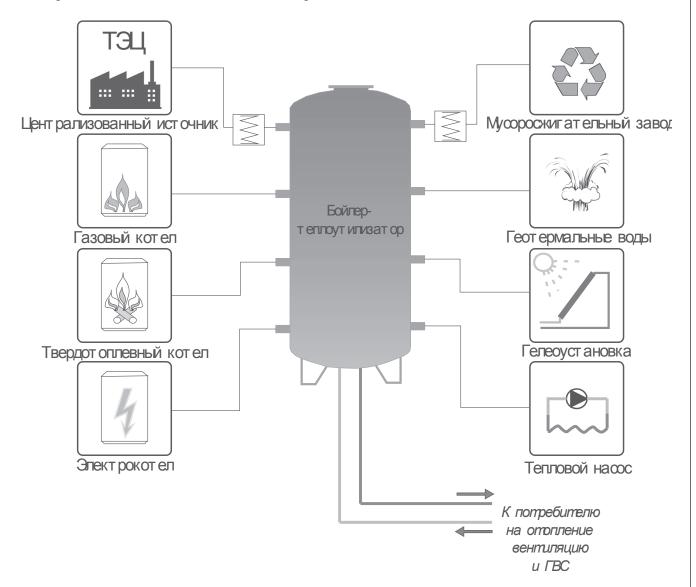


Рис. 1. Схема комбинированной системы теплоснабжения

Комбинированные системы теплоснабжения

Комбинированные системы теплоснабжения (КСТС) получили широкое распространения во многих странах (Дания, Франция, Швеция и др.).

На рис. 1 показана схема комбинированной системы теплоснабжения, которая состоит из различных источников тепла: централизованного теплоснабжения, воспроизводимых источников тепловой энергии, котлов-генератор тепловой энергии (ГТЭ). Все эти источники отдают тепло потребителям через общий бойлер-теплоутилизатор.

Принцип работы КСТС заключается в следующем: от системы централизованного теплоснабжения через теплообменник (СЦТС) теплоноситель с постоянной или переменной температурой подается в бойлер-теплоутилизатор. Расход или температура

теплоносителя регулируется с помощью системы автоматики в зависимости от параметров теплоносителя в бойлере-теплоутилизаторе.

В этот же бойлер-теплоутилизатор поступает тепловая энергия от котлов работающих на различных видах топлива, от солнечных коллекторов, от тепловых насосов и от источников вторичной тепловой энергии.

В теплый период года расчетное потребление тепловой энергии может быть обеспечено за счет альтернативных низкотемпературных источников тепла. При этом ГТЭ и СЦТС могут быть отключены. При увеличении потребления тепловой энергии автоматически увеличивается отбор теплоносителя от СЦТС. В холодный период года, когда потребление тепловой энергии еще сильнее увеличивается, включается ГТЭ.

СЦТС может подавать потребителю теплоноситель с постоянной температурой или переменной . Расход теплоносителя при этом регулируется автоматически в зависимости от температуры в бойлере-теплоутилизаторе.

Тепло от солнечных коллекторов используется сезонно. При использовании в качестве теплоносителя этилен-гликоля тепло солнечной энергии может использоваться круглый год в дневное время.

Низкопотенциальное тепло, накопленное в воздухе, земле, водоемах или в качестве сброса вторичного тепла на предприятиях (охлаждение оборудования, канализационные стоки), преобразуется с помощью теплового насоса и накапливается в бойлеретеплоутилизаторе.

Тепловая энергия от ТВЭР поступает во время сброса такой энергии, при работе источников ТВЭР.

Для управления работой КСТС необходимо учитывать особенности эксплуатации солнечных коллекторов и ветроагрегатов, а так же ТВЭР. Такая схема КСТС позволяет использовать энергию солнца, ветра, ТВЭР, что снижает расход топлива на СЦТС и ГТЭ до $30\,\%$.

Использование ГТЭ в качестве пикового подогревателя обеспечивает стабильное и динамичное теплоснабжение потребителя тепловой энергией от разных источников. Пиковыми подогревателями могут быть высокоэффективные ГТЭ, в которых тепловую энергию получают при сжигании нетрадиционных видов топлива, в том числе твердых бытовых отходов.

Покрытие тепловых нагрузок показано на рис. 2.

Как видно из рис. 2 наличие в комбинированной схеме теплоснабжения твердотопливных котлов, гелиоустановок, вторичных тепловых энергоресурсов и других альтернативных возобновляемых источников, позволяет значительно снизить расход газа для производства тепла на теплоэлектроцентралях и пиковых котельных.

Внедрение в реальную практику теплоснабжения комбинированных схем является весьма перспективной и экономически оправданной задачей. Наличие в комбинированной схеме бака-теплоутилизатора позволяет принять любые виды тепловой энергии от любых источников, работающих с различными параметрами теплоносителя. Важным моментом в предлагаемой нами схеме является то, что присоединение различных теплоисточников может происходить последовательно по мере их возникновения и использования.

Следует также подчеркнуть важность внедрения комбинированных схем с экологической точки зрения, так как использование возобновляемых источников энергии значительно сокращает количество топлива и следовательно вредных выбросов от его сжигания.

Выводы

Представляется правильным основное организационное решение массового распространения комбинированных схем в городах и населенных пунктах: эксплуатация всех источников тепла должна осуществляется единой теплоснабжающей организацией, которая может действовать в виде ассоциации, корпорации, холдинга или строить свои взаимоотношения через соответствующие подразделения местных органов власти.

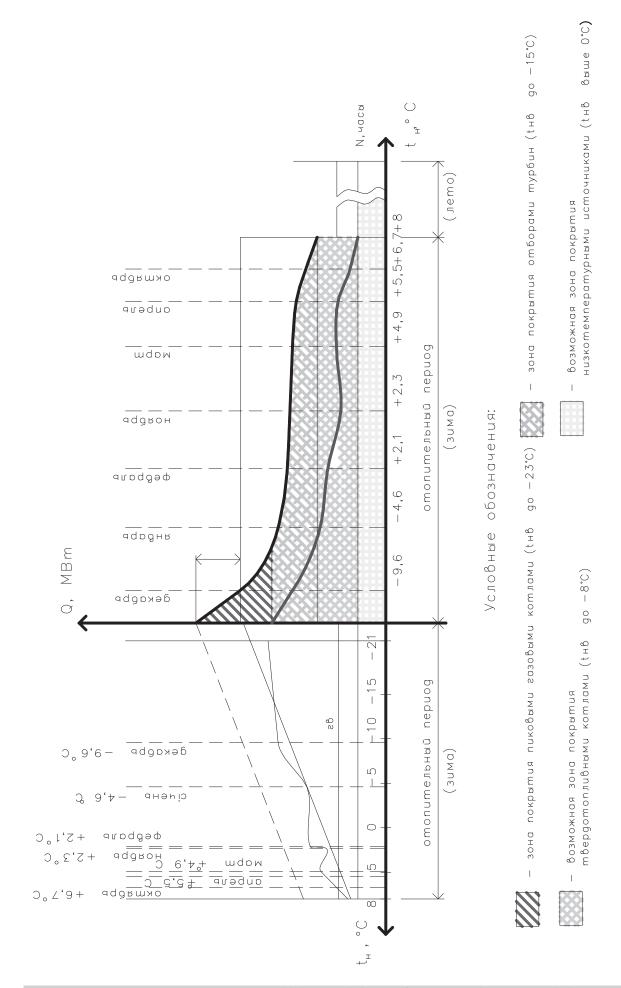


Рис. 2. Интегральный график отпуска тепла с зонами покрытия различными источниками

Список использованной литературы

- 1. Енергоефективність та відновлювані джерела енергії./Під заг.ред. А. К. Шкидловського. К.: Українські енциклопедичні знання, 2007. –560 с.
- 2. Энергосбережение в системах теплоснабжения, вентиляции и кондиционирования воздуха: Справ. пособие /Л. Д. Богуславский, В. И. Ливчак, В. П. Титов и др.; Под ред. Л. Д. Богуславского и В. И.Ливчака М.: Стройиздат, 1990. -624 с.: ил. 72.
- 3. Кириленко И. Г. Совместная работа высокотемпературных и низкотемпературных источников тепла на единую тепловую сеть: Дис. канд. техн. наук (05.23.03) / XHУCA. Харьков, 2014. 167 с.

References

- 1. Shkidlovskiy, A. K. (2007), Energy Efficiency and Renewable Energy [Energoefektyvnist ta vidnovluvalni dzherela energii], *Ukrainian encyclopedic knowledge.*, 560 p.
- 2. Boguslavskiy, L. D., & Livchak V. I., Titov V. P. (1990) Energy savings in heat supply, ventilation and air conditioning [Energosberezhenie v sistemah teplosnabzheniya, venyilyacii I kondicionirovaniya], A Reference Guide., 624 p.
- 3. Kirilenko I.G . (2014) Collaboration high-and low-temperature heat sources to a single district heating network [Sovmestnaya rabota visokotemperaturnih i nizkotemperaturnih istochnikov na edinuyu teplovuyu set], *The dissertation work.*, 167 p.

Поступила в редакцию 24.09 2014 г.