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TEST BENCH WITH SUPERCAPACITOR STORAGE 
This paper describes a test bench developed to study and monitor the propulsion drives of electric 

vehicles at Tallinn University of Technology. The composition and performance of the setup are explained. 
The charging process of the supercapacitor bank is described as an example of the test bench application. 
The developed simulation model of the supercapacitor bank is presented and discussed.   
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INTRODUCTION 

An electric vehicle (EV) represents a transport facility, such as a bicycle, a car, or a train propelled 
by an electric motor. The EV is a rather complex system for accurate mathematical description, monitoring, 
and validation. However, today much attention is paid to the studies of EVs and their test platforms. The test 
bench, combining advantages of software models and real equipment, contributes to the reduction of the 
number of vehicle test runs and safe maintenance. Reports on the test benches developed in different 
research centres cover energy management [16], [7] optimal configuration [12], [1], [4] and combination of 
different energy sources of EVs [11], like the batteries [8], supercapacitor packs [2], [3], [5], flywheels [11], 
and fuel cells [17]. 

The focus in this paper is on the EV propulsion electrical motor drives, which are the main 
components of EVs that define their energy efficiency, distance, speed and acceleration performances, and 
cost. Results received from the proposed test bench could affect the choice of the propulsion drive 
components and the assessment of the particular drive manufacturing technologies. They suit for the 
comparison of different models of the propulsion drives in terms of their dynamic performance at start-up 
and braking, static stability on the road, energy consumption, reliability, and control suitability. Such 
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solutions may help researchers in the selection of the car models and companies to support and in providing 
customers with many hidden data of the marketable electric cars. 

TEST BENCH DESCRIPTION 
The test bench described in this paper facilitates analysis and comparison of EV motor drives from 

the viewpoint of their power economical performance resulting in the selection of EVs most appropriate for 
regional road and climate conditions. The platform is suitable for exploring different steady-state and 
dynamic modes of the motor drive performance in multiple EV applications. The developed simulation and 
experimental techniques could be effectively applied to the drives working in many EV motor modes.  

The major part of the powertrain of the experimental setup is shown in Fig.  1. The test bench 
incorporates two electrical drives, the testing drive ABB ACS 800 and the loading drive ABB ACS 611. 
Every drive is equipped with a squirrel cage induction motor and AC/DC and DC/AC converters coupled via 
an intermediate DC link. The shafts of the motors mounted on the single base are mechanically coupled 
through a cardan transmission to provide their joint rotation. The testing drive is equipped with a speed pedal 
to imitate the regular driver’s habits in the case of the vehicle application. Electrical equipment is installed 
within a cabling cabinet the front panel of which is occupied by the remote control buttons, control panels, 
sockets, and measurement devices [18]. 

The test bench enables four quadrant smooth load variation of the testing drive, which can be 
explored within all possible running and braking modes. By adjusting the loading torque, a wide range of 
different EV motion conditions can be simulated on the test bench at different slip values including the 
vehicle locking. This is analogous to the braking process of a vehicle whose wheel can rotate freely or be 
locked. By applying different loads and slip gains, a variety of driving conditions on the dry, wet, and icy 
surfaces can be studied. The testing drive can be supplied with variable voltages and frequencies both in  
open and the closed loop DTC (Direct Torque Control) control modes. The loading drive operates only in the 
DTC control mode to provide smooth transition between the forward and the reverse torques. Using the ABB 
software DriveWindow, it is possible to track, save and analyze the parameters of the booth drives of the test 
bench. In addition to the ABB equipment, the test bench is supplied with the speed sensor and the input 
energy analyzer. 

The testing drive can be calibrated to obtain the speed-torque characteristics of its static and dynamic 
performances. To this aim, at the beginning of experimentation an active DC load is applied to the testing 
drive to provide an energy flow during the regenerative braking. In this way the test bench is calibrated 
correctly for further studies, particularly to study the propulsion efficiency aiming to reduce the drive losses. 
To explore dynamic EV performance, the standard urban driving cycle ECE-R15 is used, which represents 
an alternating speed of the vehicle in the predefined time intervals. The testing drive based on the ABB ACS 
800 has the internal logical controller that allows many speed testing programs to be designed under adaptive 
DriveAP programming software.  

Diagrams in Fig.  2 were plotted using the DriveWindow toolbox at the constant load of 21 Nm. The 
ECE-P15 speed set-point diagram is shown by the dashed lines (Fig.  2.a). The set of speed timing traces 
shows that the measured speed values correspond to the speed set-point values. Some inaccuracies in the 
corners could be explained by the normal open loop system operation. Inaccuracy during the constant-speed 
motion is due to the induction motor slip. Both errors can be eliminated by the transition to the close-loop 
operation. Other timing diagrams display the current (Fig.  2.b), power (Fig.  2.c), and active torque (Fig.  
2.d) throughout the driving cycle. The power peaks at acceleration could be reduced using the fast operated 
storage systems such as supercapacitors.  

Results obtained from the test bench can be used to choose the drive components and to assess the 
particular drive manufacturing technologies. They are suitable for the comparison of different models of the 
propulsion drives in terms of their dynamic performance at start-up and braking, static stability on the road, 
energy consumption, reliability, and control properties.  
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TESTING AND SIMULATION OF THE SUPERCAPACITOR BENCH 

The possibilities of the test bench could be expanded with the help of additional setups, like 
supercapacitor bank storage with an adjustable DC/DC converter that allows comparing different 
charging/discharging modes and optimal tuning of the EV supercapacitor energy storage.  

An electric double-layer capacitor (EDLC), or just a supercapacitor is a capacitor with high power 
destiny, with a capacitance up to kilofarads and high-rate charge/discharge characteristics. The EDLC uses 
solid porous carbon on either side of a porous membrane containing a dilute sulphuric acid electrolyte which 
is dispersed and is in intimate contact with the high surface area electrode material [15]. Such high surface 
area and small charge separation highly increase the supercapacitor capacitance relative to the conventional 
capacitors. The electric charge stored in the layer is proportional to the surface area of the electrode and 
reversely proportional to the thickness of the double layer. Optimizing the pore-size distribution of the 
electrodes improves the high-rate charge/discharge characteristics [9]. 
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Fig.  2. Sample urban driving cycle ECE-R15 applied to the loaded testing motor 
 

The main benefits of supercapacitors are high specific power and high efficiency, low self-discharge, 
long lifetime, and low cost per cycle. The main drawbacks of supercapacitors are: low voltage of a single 
device; to increase the voltage several capacitors should be connected in series which decrease the total 
capacity [13]. Supercapacitors are now being used in many applications where higher power densities are 
required. Among them, the load levelling in EV and hybrid EV, telecommunications built on the short high-
power pulses, and power smoothing in elevators [6]. 

 

Fig.  1. Basic circuit of the test bench 
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The developed supercapacitor bench consists of a supercapacitor bank, a bidirectional buck-boost 
DC converter and an LC filter. The supercapacitor bank consists of three Maxwell 48V/165F modules 
connected in series with a total capacitance of 55F and voltage of 144V. According to [6, 14], from the 
viewpoint of efficiency, stability and failure modes tolerance, the dual bidirectional buck-boost interface 
topology of the DC/DC converter is more suitable for applications like EVs. The buck-boost converter is 
used to decrease DC-link voltage to the supercapacitor range and to limit the charging current. To reduce the 
ripple factor, an LC filter is used.  

 

Fig.  3. PSIM simulation scheme of the supercapacitor bench 
 

Many supercapacitor models have been published based on the material structure of the 
supercapacitor and their limitations. One of the classical equivalent circuits suitable for slow charge-
discharge applications (Fig. 3) was used in this study [6, 14]. It includes the supercapacitors (SC), equivalent 
series resistors (ESR) to emulate the internal resistances that occur during charging and discharging, and 
equivalent parallel resistors (EPR) to represent the path of the leakage charge which, for supercapacitors, has 
a long-term effect. 

The diagram in Fig. 4 shows the charging process of the supercapacitor bench supplied from the DC 
link with constant duty cycle. As the diagram reveals, it takes about 300 s to charge the superapacitor banks 
from the half-rated level to 97%. The normalized voltage swing (Umin/Umax) at open circuit for 
supercapacitors is 0.2. It is limited by the electronic circuitry, which does not allow the supercapacitor depth 
of discharge (DOD) to exceed 80 % [10]. It means that in real applications the charging/discharging time is 
shorter. 
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Fig. 4. Voltage and current responses obtained during the supercapacitor charging 

 

 
Although the model is widely used, it fails to simulate all the dynamics of the supercapacitor cell. 

That is because the capacitance of a supercapacitor is generally not constant, and the charging process 
strongly depends on the terminal voltage [6]. Therefore, more accurate supercapacitor dynamic models are to 
be used for short-term modelling. 

Figure 5 presents some results obtained from the measurements during the charging of the 
supercapasitor bank and those from the PSIM modelling of this schemeFig.  5. Experimental and modelling 
results.  
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Fig.  5. Experimental and modelling results 
 

CONCLUSION 
The platform described in this paper provides durability and functional tests to the customers and 

helps to solve many other propulsion problems. The results received from the charging tests of the 
supercapacitor bank could be used for correct choice, verification and tuning of the real EV with a 
supercapacitor. The designed PSIM software could be used for computer simulation of different 
supercapacitor charging conditions. 
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