УДК 658.264

Алексахін Олександр Олексійович, канд. техн. наук, доцент кафедри теплофізики та молекулярної фізики. Харківський національний університет імені В.Н.Каразіна, м. Харків, Україна. *майдан Свободи 4, м. Харків,* 61022. Тел. +38-096-251-06-13

Бобловський Олександр Володимирович, асистент кафедри експлуатації газових і теплових систем. Харківський національний університет міського господарства імені О.М.Бекетова, м. Харків, Україна. *Вул. Революції, 12, м. Харків, Україна, 61002. Тел.* +38-099-530-59-06. *E-mail:* <u>boblovskey@yandex.ua</u>

ДО ПИТАННЯ ПРО ПЕРЕХІД НА ДВОТРУБНІ СИСТЕМИ ТЕПЛОПОСТАЧАННЯ МІКРОРАЙОНІВ

Проаналізовано вплив застосування додаткової теплоізоляції будівель на зміну витрати теплоносія для теплопостачання мікрорайону в умовах переходу до двотрубної схеми теплопостачання. Запропоновано формулу для визначення середньої кількості жителів у будинку, при якій в результаті переходу до двотрубної системі витрата мережної води в порівнянні з чотиритрубної системою практично не збільшується.

Ключові слова: централізоване теплопостачання, водопідігрівна установка, теплоізоляція будівель, енергозбереження.

Алексахин Александр Алексеевич, канд. техн. наук, доцент кафедры теплофизики и молекулярной физики. Харьковский национальный университет имени В.Н.Каразина, г. Харьков, Украина. *площадь Свободы 4, г. Харьков, 61022. Тел.* +38-096-251-06-13

Бобловский Александр Владимирович, ассистент кафедры эксплуатации газовых и тепловых систем. Харьковский национальный университет городского хозяйства имени А.Н.Бекетова, г. Харьков, Украина. Ул. Революции, 12, г. Харьков, Украина, 61002. Тел. +38-099-530-59-06. E-mail: <u>boblovskey@yandex.ua</u>

К ВОПРОСУ О ПЕРЕХОДЕ НА ДВУХТРУБНЫЕ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МИКРОРАЙОНОВ

Проанализировано влияние применения дополнительной теплоизоляции зданий на изменение расхода теплоносителя для теплоснабжения микрорайона в условиях перехода к двухтрубной схеме теплоснабжения. Предложена формула для определения среднего числа жителей в здании, при котором в результате перехода к двухтрубной системе расход сетевой воды в сравнении с четырехтрубной системой практически не увеличивается.

Ключевые слова: централизованное теплоснабжение, водонагревательная установка, теплоизоляция зданий, энергосбережение.

Aleksahin Alexander Alekseevich, cand. of techn. sciences, associate professor in the department of thermal and molecular physics. V. N. Karazin Kharkiv National University, Kharkiv, Ukraine. Svobody Sq. 4, 61022, Kharkiv, Ukraine. Tel. +38-096-251-06-13

Boblovskij Alexander Vladimirovich, assistant in the department of Department of operation of gas and heating systems. O. M. Beketov National University of Urban Economy in Kharkiv, Kharkiv, Ukraine. *Str. Revolution*, 12, Kharkiv, Ukraine, 61002. Tel. +38-099-530-59-06. E-mail: boblovskey@yandex.ua

TO THE QUESTION ON TRANSITION TO A TWO-PIPE SYSTEM OF A HEAT SUPPLY OF DISTRICTS

Analyzed the impact of the use of additional building insulation at changing the coolant flow to a heat supply of district in the transition to a two-pipe scheme of heat supply. The formula to determine the average number of inhabitants in the building at which the transition to a two-pipe system, the flow rate of network water in comparison with four-pipe system practically does not increase.

Keywords: district heating, water heater, heat insulation of buildings, saving energy.

Введение

Стремление уменьшить потери централизованных теплоты В системах теплоснабжения обусловило возникновение и развитие идеи замены традиционной четырехтрубной микрорайонной тепловой сети (подающий и обратный трубопроводы отопления и подающий и циркуляционный трубопроводы горячего водоснабжения) двухтрубной, что потребует установки теплообменных аппаратов для подогрева горячей воды на тепловых пунктах отдельных зданий. Нормативными документами рекомендуется использование ДЛЯ оборудования индивидуальных тепловых ПУНКТОВ $(\Pi T \Pi)$ одноступенчатой присоединения водоподогревателей тепловым схемы сетям.

Существующие же проекты центральных тепловых пунктов микрорайонов предполагают, как правило, использование двухступенчатых схем присоединения теплообменников, которые в сравнении с одноступенчатыми схемами обеспечивают снижение расхода сетевой воды для нужд горячего водоснабжения. Отказ от централизованной микрорайонной водоподогревательной установки приведет также к росту расхода нагреваемой воды из-за увеличения коэффициента часовой неравномерности водопотребления. В связи с вышесказанным при переходе к двухтрубным сетям следует ожидать увеличения расхода сетевой воды примерно на 50% [1]. Уменьшение расхода греющего теплоносителя для отопления микрорайона может обеспечить использование дополнительной теплоизоляции наружных ограждений зданий. Заметного снижения расхода сетевой воды для нужд горячего водоснабжения можно добиться установкой индивидуальных средств учета у потребителей.

Целью данной работы является оценка влияния применения дополнительной теплоизоляции зданий на изменение расхода теплоносителя для теплоснабжения микрорайона в условиях перехода к двухтрубной схеме теплоснабжения.

Для оценок увеличения расхода воды из тепловых сетей при указанном реформировании микрорайонной системы теплоснабжения без дополнительного утепления зданий в [1] предложена формула:

$$\frac{\sum_{i=1}^{n} G_{i}}{G_{UTII}} = \frac{9.3 \frac{\sum_{i=1}^{n} m_{i}^{0.817}}{m} + \frac{1.25}{\gamma}}{0.052(t_{\Gamma} - t_{h1}) + \frac{1.25}{\gamma}},\tag{1}$$

где G_i – расход сетевой воды для отдельного здания рассматриваемой группы; $G_{\text{цтп}}$ – расход сетевой воды через центральный тепловой пункт (ЦТП) микрорайона при четырехтрубной схеме; i

- число зданий (ИТП);

 γ – соотношение максимальных тепловых нагрузок горячего водоснабжения и отопления для микрорайона до реформирования;

 t_{Γ} – температура горячей воды; t_{h1} – температура нагрева воды на первой ступени установленной на ЦТП водонагревательной установки (ВНУ).

Формула (1) получена в предположении, что на ЦТП теплообменники присоединены по двухступенчатой смешанной схеме. С учетом возможного утепления зданий формула может быть трансформирована к виду:

$$\frac{\sum_{i=1}^{n} G_{i}}{G_{\mathcal{U}TII}} = \frac{9.3 \frac{\sum_{i=1}^{n} m_{i}^{0.817}}{m} + \frac{1.25 \beta}{\gamma}}{0.052(t_{\Gamma} - t_{h1}) + \frac{1.25}{\gamma}},$$
(2)

где β – коэффициент, учитывающий изменение расхода сетевой воды на отопление зданий при утеплении.

Для случая присоединения систем отопления зданий по зависимой схеме с помощью водоструйных элеваторов [2] значение коэффициента β можно определить по формуле:

$$\beta = \frac{\mu \cdot \overline{Q_o} \cdot \Delta \tau_c^p}{\tau_6 - t_s - \left(\mu \cdot \overline{Q_o}\right)^{0.8} \cdot \left[\Delta t_{np,p} - 0.5 \cdot \theta_p \cdot \left(\mu \cdot \overline{Q_o}\right)^{0.2}\right]},\tag{3}$$

где $\Delta \tau_c^{\ p}$ — разность температур в подающем и обратном трубопроводах теплосети при расчетной для отопления температуре наружного воздуха;

 $\mu = Q_{p.o.}^{\ \ yr}/\ Q_{p.o}$ — коэффициент, учитывающий снижение расчетной отопительной нагрузки здания при утеплении;

 au_6 — температура теплоносителя в подающем трубопроводе теплосети на вводе в здание; $\Delta t_{\text{пр.р.}}$ — расчетная разность средней температуры теплоносителя в отопительном приборе и воздуха в помещении;

 θ_{p} – расчетное остывание теплоносителя в системе отопления здания.

В работе [3] показано, что приведение термического сопротивления конструкций ограждения жилых зданий, построенных в последние несколько десятилетий, до уровня современных требований [4] позволяет на 25-43% снизить теплопотери через ограждающие конструкции. В настоящей работе рассмотрен диапазон значений $0,5 \le \mu \le 0,8$ (т.е.снижение отопительной нагрузки на 20-50%). Вычисления выполнены без учета охлаждения сетевой воды в микрорайонных сетях для расчетной отопительной нагрузки ($\overline{Q_o} = 1$) и значениях $\Delta \tau_c^p = 80^{\circ}\text{C}$, $\theta_p = 25^{\circ}\text{C}$, $t_\text{B} = 18^{\circ}\text{C}$, $\Delta t_{\text{пр.p}} = 64,5^{\circ}\text{C}$, $t_\text{F} = 60^{\circ}\text{C}$, $0,6 \le \gamma \le 1$. Изменение расхода сетевой воды для горячего водоснабжения зависит от числа тепловых пунктов и параметров зданий. Характеристики принятых к рассмотрению идеализированных жилых групп приведены в табл. 1.

Таблица 1 Характеристики групп зданий

Вариант Показатель	1	2	3	4	5	6
Общее число жителей, чел	10000	10000	10000	10000	10000	10000
Число зданий (ИТП)	50	20	10	3	2	1
Число жителей в одном здании, m_0 , чел.	200	500	1000	3333	5000	10000

Рассчитанное по формуле (2) изменение расхода сетевой воды для групп зданий при указанном реформировании системы без утепления зданий приведено в табл. 2, из которой видно, что в этом случае имеет место существенный рост расхода сетевой воды. Учитывая, что ориентировочное количество жителей в типовом жилом доме, имеющем 3–6 секций, равно 500–1000чел. указанное увеличение составляет примерно от 30 до 50 %.

Таблица 2 Изменение расходов сетевой воды ($\sum_{i=1}^n G_i \Big/ G_{I\!\!I\!I\!I\!I}$) без утепления строительных конструкций зданий

Вариант Соотношение <i>ү</i>	1	2	3	4	5	6
0,6	1,58	1,42	1,33	1,18	1,14	1,07
0,8	1,66	1,503	1,39	1,215	1,17	1,09
1,0	1,765	1,56	1,43	1,24	1,19	1,10

Влияние утепления зданий на расход теплоносителя показано на рис. 1, из которого видно, что в этом случае возможны ситуации, при которых потребность в сетевой воде после утепления зданий не превышает или даже меньше, чем для исходного варианта (до утепления и перехода к двухтрубной схеме). Представленные на рис. 1 данные характеризуют параметры централизованной микрорайонной ВНУ, рассчитанной на температуру нагрева воды на первой ступени $t_{h1} = 32 \, ^{\circ}\text{C}$. Увеличение указанной температуры при проектировании водоподогревателей обуславливает рост требуемого расхода сетевой воды (рис. 2). Отличие величины изменения расхода для температур 27 $^{\circ}\text{C}$ и 37 $^{\circ}\text{C}$ составляет примерно 16–20 %.

Как видно из рис. 1, для каждого рассмотренного случая перехода к двухтрубной схеме с предварительным утеплением зданий есть некоторая условная численность жителей в одном здании (m_{kp}) , при которой расходы сетевой воды для рассматриваемого и исходного вариантов одинаковы.

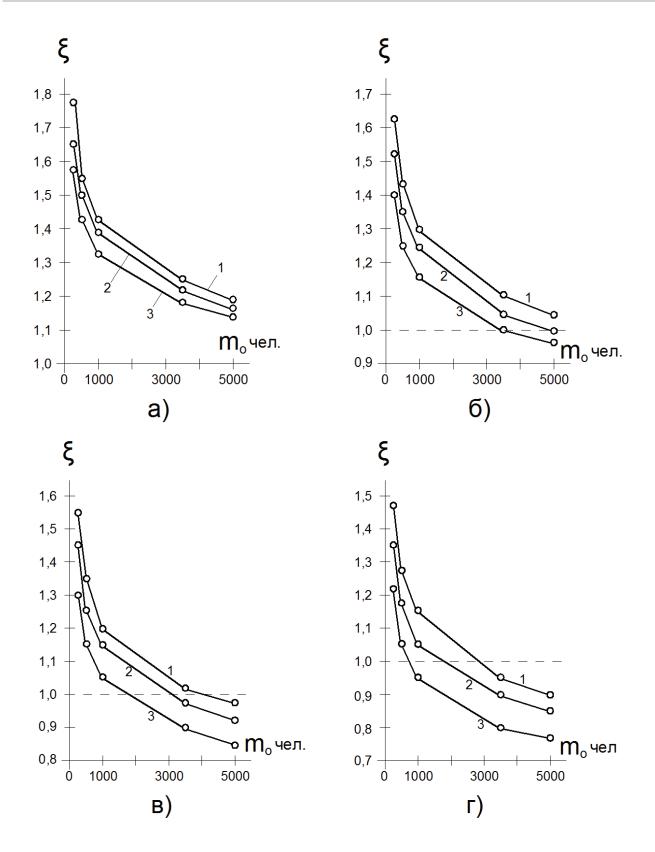


Рис. 1. Изменение расхода сетевой воды для горячего водоснабжения зданий микрорайона при переходе к двухтрубной схеме теплоснабжения: $\xi = \sum_{i=1}^n G_{\mathit{UTII}} \Big/ G_{\mathit{UTII}} - \text{расход через индивидуальный пункт здания; } n - \text{число ИТП;}$

 $G_{\text{ЦТП}}$ – расход через центральный тепловой пункт при 4-трубной схеме) $a-\mu=1; \ \delta-\mu=0,8; \ B-\mu=0,65; \ \Gamma-\mu=0,5;$

$$A - \mu = 1$$
; $O - \mu = 0.8$; $B - \mu = 0.65$; $\Gamma - \mu = 0.5$; $1 - \gamma = 1.0$; $2 - \gamma = 0.8$; $3 - \gamma = 0.6$

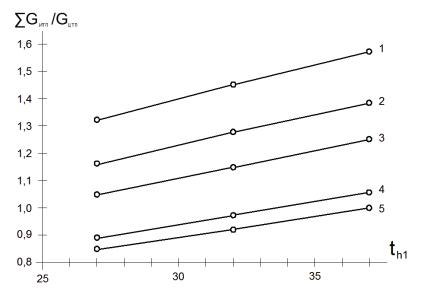


Рис. 2. Влияние температуры нагрева воды на первой ступени ВНУ на изменение суммарного расхода сетевой воды через ИТП: 1, 2, 3, 4, 5 – номера расчетных вариантов ($\mu = 0.65$; $\gamma = 0.8$)

Изменение величины $m_{\kappa p}$ в зависимости от степени эффективности дополнительной теплоизоляции зданий (μ) и исходного соотношения максимальных тепловых нагрузок группы зданий в целом (γ) показано на рис. 3. Расчетные данные с погрешностью, не превышающей 9%, обобщены формулой (4):

$$m_{\kappa p} = \frac{0,119 \cdot 10^4}{8,41 \cdot \gamma^{-2,39} \left[1 - \mu \cdot \left(0,94 + \frac{0,12}{\gamma} \right) \right]}$$
 (4)

Сопоставление расчетных данных и результатов вычислений по уравнению (3) выполнено на рис.3.

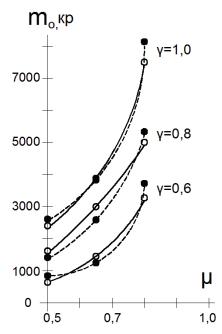


Рис. 3. Изменение критического числа жителей в одном здании микрорайона, обеспечивающее уменьшение расхода сетевой воды при переходе на двухтрубную систему теплоснабжения (———— расчет; ————— формула (4))

Выводы

- 1. При переходе к двухтрубной системе теплоснабжения без увеличения термического сопротивления стройконструкций зданий микрорайона следует ожидать увеличения расхода теплоносителя из тепловых сетей не менее, чем в 1,5 раза
- 2. Переходу к двухтрубной схеме теплоснабжения жилой группы должно предшествовать утепление зданий с максимально возможной эффективностью, что позволит уменьшить требуемый для теплоснабжения микрорайона расход сетевой воды. Уменьшение расхода зависит также от числа жителей в здании, схемы присоединения к теплосети и характеристик водоподогревательной установки в исходном варианте.
- 3. Предложена формула для определения среднего числа жителей в здании, при котором в результате перехода к двухтрубной системе расход сетевой воды в сравнении с четырехтрубной системой практически не увеличивается.

Список использованной литературы:

- 1. Алексахин А. А. Оценка изменения теплообменной поверхности водоподогревателей при переходе на двухтрубную микрорайонную систему теплоснабжения [Текст] // Комунальне господарство міст. Наук.-тех. зб., вип.110, 2013. С. 131–135.
- 2. Повышение эффективности работы тепловых пунктов [Текст] / Н. М. Зингер, В. Г. Бестолченко, А. А. Жидков. М.: Стройиздат, 1990. 185 с.
- 3. Алексахин А. А., Бобловский А. В. Оценка энергосберегающего потенциала функционирующих жилых зданий [Текст]. Энергосбережение · Енергетика · Энергоаудит, 2012, № 1(95) С. 10–14.
- 4. ДБН В 2.2-15-2005. Житлові будинки. Основні положення. [Текст]. К.: Держбуд України, 2005. 36 с.

References:

- 1.Aleksahin A. A. (2013), Estimation of change the heat-exchange surface of vodopodogrevateley in transition on double-pipe mikrorayonnuyu scheme of teplosnabzheniya [Ocenka izmenenija teploobmennoj poverhnosti vodopodogrevatelej pri perehode na dvuhtrubnuju mikrorajonnuju sistemu teplosnabzhenija] [Tekst] //Komunal'ne gospodarstvo mist. Nauk.-teh. zb., vip. 110, P. 131–135.
- 2.N. M. Zinger, V. G. Bestolchenko, A. A. Zhidkov (1990), Increase of efficiency of work of thermal points [Povyshenie jeffektivnosti raboty teplovyh punktov] [Tekst] / M.: Strojizdat, 185 p.
- 3.Aleksahin A.A., Boblovskij A.V. (2012) Estimation of energysaving potential of functionings dwellings buildings [Ocenka jenergosberegajushhego potenciala funkcionirujushhih zhilyh zdanij][Tekst]. Jenergosberezhenie. Jenergotika. Jenergoaudit, № 1(95) P. 10–14.
- 4.DBN V 2.2-15-2005. Zhitlovi budinki. Osnovni polozhennja [DBN In 15-2005. Zhitlov³ budinki. Osnovn³ polozhennya] [Text]. K.: Derzhbud Ukra;ni [Tekst]. K.: Derzhbud Ukra;ni [2005. 36 p.

Поступила в редакцию 28.10 2015 г.